3.482 \(\int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=129 \[ \frac {a}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}+\frac {a^2-b^2}{d \left (a^2+b^2\right )^2 (a+b \tan (c+d x))}-\frac {a \left (a^2-3 b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )^3}+\frac {b x \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^3} \]

[Out]

b*(3*a^2-b^2)*x/(a^2+b^2)^3-a*(a^2-3*b^2)*ln(a*cos(d*x+c)+b*sin(d*x+c))/(a^2+b^2)^3/d+1/2*a/(a^2+b^2)/d/(a+b*t
an(d*x+c))^2+(a^2-b^2)/(a^2+b^2)^2/d/(a+b*tan(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {3529, 3531, 3530} \[ \frac {a}{2 d \left (a^2+b^2\right ) (a+b \tan (c+d x))^2}+\frac {a^2-b^2}{d \left (a^2+b^2\right )^2 (a+b \tan (c+d x))}-\frac {a \left (a^2-3 b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )^3}+\frac {b x \left (3 a^2-b^2\right )}{\left (a^2+b^2\right )^3} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]/(a + b*Tan[c + d*x])^3,x]

[Out]

(b*(3*a^2 - b^2)*x)/(a^2 + b^2)^3 - (a*(a^2 - 3*b^2)*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)^3*d) +
 a/(2*(a^2 + b^2)*d*(a + b*Tan[c + d*x])^2) + (a^2 - b^2)/((a^2 + b^2)^2*d*(a + b*Tan[c + d*x]))

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3530

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c*Log[Re
moveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]])/(b*f), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rubi steps

\begin {align*} \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^3} \, dx &=\frac {a}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}+\frac {\int \frac {b+a \tan (c+d x)}{(a+b \tan (c+d x))^2} \, dx}{a^2+b^2}\\ &=\frac {a}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}+\frac {a^2-b^2}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}+\frac {\int \frac {2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{a+b \tan (c+d x)} \, dx}{\left (a^2+b^2\right )^2}\\ &=\frac {b \left (3 a^2-b^2\right ) x}{\left (a^2+b^2\right )^3}+\frac {a}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}+\frac {a^2-b^2}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}-\frac {\left (a \left (a^2-3 b^2\right )\right ) \int \frac {b-a \tan (c+d x)}{a+b \tan (c+d x)} \, dx}{\left (a^2+b^2\right )^3}\\ &=\frac {b \left (3 a^2-b^2\right ) x}{\left (a^2+b^2\right )^3}-\frac {a \left (a^2-3 b^2\right ) \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^3 d}+\frac {a}{2 \left (a^2+b^2\right ) d (a+b \tan (c+d x))^2}+\frac {a^2-b^2}{\left (a^2+b^2\right )^2 d (a+b \tan (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.84, size = 234, normalized size = 1.81 \[ \frac {-\frac {2 b}{\left (a^2+b^2\right ) (a+b \tan (c+d x))}+\frac {4 a b \log (a+b \tan (c+d x))}{\left (a^2+b^2\right )^2}+a \left (\frac {b \left (\frac {\left (a^2+b^2\right ) \left (5 a^2+4 a b \tan (c+d x)+b^2\right )}{(a+b \tan (c+d x))^2}+\left (2 b^2-6 a^2\right ) \log (a+b \tan (c+d x))\right )}{\left (a^2+b^2\right )^3}+\frac {i \log (-\tan (c+d x)+i)}{(a+i b)^3}-\frac {\log (\tan (c+d x)+i)}{(b+i a)^3}\right )-\frac {i \log (-\tan (c+d x)+i)}{(a+i b)^2}+\frac {i \log (\tan (c+d x)+i)}{(a-i b)^2}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]/(a + b*Tan[c + d*x])^3,x]

[Out]

(((-I)*Log[I - Tan[c + d*x]])/(a + I*b)^2 + (I*Log[I + Tan[c + d*x]])/(a - I*b)^2 + (4*a*b*Log[a + b*Tan[c + d
*x]])/(a^2 + b^2)^2 - (2*b)/((a^2 + b^2)*(a + b*Tan[c + d*x])) + a*((I*Log[I - Tan[c + d*x]])/(a + I*b)^3 - Lo
g[I + Tan[c + d*x]]/(I*a + b)^3 + (b*((-6*a^2 + 2*b^2)*Log[a + b*Tan[c + d*x]] + ((a^2 + b^2)*(5*a^2 + b^2 + 4
*a*b*Tan[c + d*x]))/(a + b*Tan[c + d*x])^2))/(a^2 + b^2)^3))/(2*b*d)

________________________________________________________________________________________

fricas [B]  time = 0.86, size = 328, normalized size = 2.54 \[ \frac {5 \, a^{3} b^{2} - a b^{4} + 2 \, {\left (3 \, a^{4} b - a^{2} b^{3}\right )} d x - {\left (3 \, a^{3} b^{2} - 3 \, a b^{4} - 2 \, {\left (3 \, a^{2} b^{3} - b^{5}\right )} d x\right )} \tan \left (d x + c\right )^{2} - {\left (a^{5} - 3 \, a^{3} b^{2} + {\left (a^{3} b^{2} - 3 \, a b^{4}\right )} \tan \left (d x + c\right )^{2} + 2 \, {\left (a^{4} b - 3 \, a^{2} b^{3}\right )} \tan \left (d x + c\right )\right )} \log \left (\frac {b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) - 2 \, {\left (2 \, a^{4} b - 3 \, a^{2} b^{3} + b^{5} - 2 \, {\left (3 \, a^{3} b^{2} - a b^{4}\right )} d x\right )} \tan \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} d \tan \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b + 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} + a b^{7}\right )} d \tan \left (d x + c\right ) + {\left (a^{8} + 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} + a^{2} b^{6}\right )} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(5*a^3*b^2 - a*b^4 + 2*(3*a^4*b - a^2*b^3)*d*x - (3*a^3*b^2 - 3*a*b^4 - 2*(3*a^2*b^3 - b^5)*d*x)*tan(d*x +
 c)^2 - (a^5 - 3*a^3*b^2 + (a^3*b^2 - 3*a*b^4)*tan(d*x + c)^2 + 2*(a^4*b - 3*a^2*b^3)*tan(d*x + c))*log((b^2*t
an(d*x + c)^2 + 2*a*b*tan(d*x + c) + a^2)/(tan(d*x + c)^2 + 1)) - 2*(2*a^4*b - 3*a^2*b^3 + b^5 - 2*(3*a^3*b^2
- a*b^4)*d*x)*tan(d*x + c))/((a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d*tan(d*x + c)^2 + 2*(a^7*b + 3*a^5*b^3 +
 3*a^3*b^5 + a*b^7)*d*tan(d*x + c) + (a^8 + 3*a^6*b^2 + 3*a^4*b^4 + a^2*b^6)*d)

________________________________________________________________________________________

giac [B]  time = 1.12, size = 275, normalized size = 2.13 \[ \frac {\frac {2 \, {\left (3 \, a^{2} b - b^{3}\right )} {\left (d x + c\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {2 \, {\left (a^{3} b - 3 \, a b^{3}\right )} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}} + \frac {3 \, a^{3} b^{2} \tan \left (d x + c\right )^{2} - 9 \, a b^{4} \tan \left (d x + c\right )^{2} + 8 \, a^{4} b \tan \left (d x + c\right ) - 18 \, a^{2} b^{3} \tan \left (d x + c\right ) - 2 \, b^{5} \tan \left (d x + c\right ) + 6 \, a^{5} - 7 \, a^{3} b^{2} - a b^{4}}{{\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} {\left (b \tan \left (d x + c\right ) + a\right )}^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

1/2*(2*(3*a^2*b - b^3)*(d*x + c)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + (a^3 - 3*a*b^2)*log(tan(d*x + c)^2 + 1)
/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - 2*(a^3*b - 3*a*b^3)*log(abs(b*tan(d*x + c) + a))/(a^6*b + 3*a^4*b^3 + 3
*a^2*b^5 + b^7) + (3*a^3*b^2*tan(d*x + c)^2 - 9*a*b^4*tan(d*x + c)^2 + 8*a^4*b*tan(d*x + c) - 18*a^2*b^3*tan(d
*x + c) - 2*b^5*tan(d*x + c) + 6*a^5 - 7*a^3*b^2 - a*b^4)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*(b*tan(d*x + c)
 + a)^2))/d

________________________________________________________________________________________

maple [A]  time = 0.20, size = 249, normalized size = 1.93 \[ \frac {a}{2 \left (a^{2}+b^{2}\right ) d \left (a +b \tan \left (d x +c \right )\right )^{2}}+\frac {a^{2}}{d \left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )}-\frac {b^{2}}{d \left (a^{2}+b^{2}\right )^{2} \left (a +b \tan \left (d x +c \right )\right )}-\frac {a^{3} \ln \left (a +b \tan \left (d x +c \right )\right )}{d \left (a^{2}+b^{2}\right )^{3}}+\frac {3 a \ln \left (a +b \tan \left (d x +c \right )\right ) b^{2}}{d \left (a^{2}+b^{2}\right )^{3}}+\frac {\ln \left (1+\tan ^{2}\left (d x +c \right )\right ) a^{3}}{2 d \left (a^{2}+b^{2}\right )^{3}}-\frac {3 \ln \left (1+\tan ^{2}\left (d x +c \right )\right ) b^{2} a}{2 d \left (a^{2}+b^{2}\right )^{3}}+\frac {3 \arctan \left (\tan \left (d x +c \right )\right ) a^{2} b}{d \left (a^{2}+b^{2}\right )^{3}}-\frac {\arctan \left (\tan \left (d x +c \right )\right ) b^{3}}{d \left (a^{2}+b^{2}\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)/(a+b*tan(d*x+c))^3,x)

[Out]

1/2*a/(a^2+b^2)/d/(a+b*tan(d*x+c))^2+1/d*a^2/(a^2+b^2)^2/(a+b*tan(d*x+c))-1/d/(a^2+b^2)^2/(a+b*tan(d*x+c))*b^2
-1/d*a^3/(a^2+b^2)^3*ln(a+b*tan(d*x+c))+3/d*a/(a^2+b^2)^3*ln(a+b*tan(d*x+c))*b^2+1/2/d/(a^2+b^2)^3*ln(1+tan(d*
x+c)^2)*a^3-3/2/d/(a^2+b^2)^3*ln(1+tan(d*x+c)^2)*b^2*a+3/d/(a^2+b^2)^3*arctan(tan(d*x+c))*a^2*b-1/d/(a^2+b^2)^
3*arctan(tan(d*x+c))*b^3

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 253, normalized size = 1.96 \[ \frac {\frac {2 \, {\left (3 \, a^{2} b - b^{3}\right )} {\left (d x + c\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {2 \, {\left (a^{3} - 3 \, a b^{2}\right )} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {3 \, a^{3} - a b^{2} + 2 \, {\left (a^{2} b - b^{3}\right )} \tan \left (d x + c\right )}{a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4} + {\left (a^{4} b^{2} + 2 \, a^{2} b^{4} + b^{6}\right )} \tan \left (d x + c\right )^{2} + 2 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (d x + c\right )}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*(2*(3*a^2*b - b^3)*(d*x + c)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) - 2*(a^3 - 3*a*b^2)*log(b*tan(d*x + c) +
a)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + (a^3 - 3*a*b^2)*log(tan(d*x + c)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4
+ b^6) + (3*a^3 - a*b^2 + 2*(a^2*b - b^3)*tan(d*x + c))/(a^6 + 2*a^4*b^2 + a^2*b^4 + (a^4*b^2 + 2*a^2*b^4 + b^
6)*tan(d*x + c)^2 + 2*(a^5*b + 2*a^3*b^3 + a*b^5)*tan(d*x + c)))/d

________________________________________________________________________________________

mupad [B]  time = 4.01, size = 224, normalized size = 1.74 \[ -\frac {\frac {a\,b^2-3\,a^3}{2\,\left (a^4+2\,a^2\,b^2+b^4\right )}-\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (a^2\,b-b^3\right )}{a^4+2\,a^2\,b^2+b^4}}{d\,\left (a^2+2\,a\,b\,\mathrm {tan}\left (c+d\,x\right )+b^2\,{\mathrm {tan}\left (c+d\,x\right )}^2\right )}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )}{2\,d\,\left (-a^3+a^2\,b\,3{}\mathrm {i}+3\,a\,b^2-b^3\,1{}\mathrm {i}\right )}-\frac {a\,\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a^2-3\,b^2\right )}{d\,{\left (a^2+b^2\right )}^3}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,1{}\mathrm {i}}{2\,d\,\left (-a^3\,1{}\mathrm {i}+3\,a^2\,b+a\,b^2\,3{}\mathrm {i}-b^3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)/(a + b*tan(c + d*x))^3,x)

[Out]

- ((a*b^2 - 3*a^3)/(2*(a^4 + b^4 + 2*a^2*b^2)) - (tan(c + d*x)*(a^2*b - b^3))/(a^4 + b^4 + 2*a^2*b^2))/(d*(a^2
 + b^2*tan(c + d*x)^2 + 2*a*b*tan(c + d*x))) - (log(tan(c + d*x) - 1i)*1i)/(2*d*(a*b^2*3i + 3*a^2*b - a^3*1i -
 b^3)) - log(tan(c + d*x) + 1i)/(2*d*(3*a*b^2 + a^2*b*3i - a^3 - b^3*1i)) - (a*log(a + b*tan(c + d*x))*(a^2 -
3*b^2))/(d*(a^2 + b^2)^3)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: AttributeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))**3,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________